176 research outputs found

    The NIR structure of the barred galaxy NGC253 from VISTA

    Full text link
    [abridged] We used J and Ks band images acquired with the VISTA telescope as part of the science verification to quantify the structures in the stellar disk of the barred Sc galaxy NGC253. Moving outward from the galaxy center, we find a nuclear ring within the bright 1 kpc diameter nucleus, then a bar, a ring with 2.9 kpc radius. From the Ks image we obtain a new measure of the deprojected length of the bar of 2.5 kpc. The bar's strength, as derived from the curvature of the dust lanes in the J-Ks image, is typical of weak bars. From the deprojected length of the bar, we establish the corotation radius (R_CR=3 kpc) and bar pattern speed (Omega_b = 61.3 km /s kpc), which provides the connection between the high-frequency structures in the disk and the orbital resonances induced by the bar. The nuclear ring is located at the inner Lindblad resonance. The second ring does not have a resonant origin, but it could be a merger remnant or a transient structure formed during an intermediate stage of the bar formation. The inferred bar pattern speed places the outer Lindblad resonance within the optical disk at 4.9 kpc, in the same radial range as the peak in the HI surface density. The disk of NGC253 has a down-bending profile with a break at R~9.3 kpc, which corresponds to about 3 times the scale length of the inner disk. We discuss the evidence for a threshold in star formation efficiency as a possible explanation of the steep gradient in the surface brightness profile at large radii. The NIR photometry unveils the dynamical response of the NGC253 stellar disk to its central bar. The formation of the bar may be related to the merger event that determined the truncation of stars and gas at large radii and the perturbation of the disk's outer edge.Comment: Accepted for publication in Astronomy & Astrphysics. High resolution pdf file is available at the following link: https://www.dropbox.com/s/4o4cofs1lyjrtpv/NGC253.pd

    Readout Concepts for DEPFET Pixel Arrays

    Get PDF
    Field effect transistors embedded into a depleted silicon bulk (DEPFETs) can be used as the first amplifying element for the detection of small signal charges deposited in the bulk by ionizing particles, X-ray photons or visible light. Very good noise performance at room temperature due to the low capacitance of the collecting electrode has been demonstrated. Regular two dimensional arrangements of DEPFETs can be read out by turning on individual rows and reading currents or voltages in the columns. Such arrangements allow the fast, low power readout of larger arrays with the possibility of random access to selected pixels. In this paper, different readout concepts are discussed as they are required for arrays with incomplete or complete clear and for readout at the source or the drain. Examples of VLSI chips for the steering of the gate and clear rows and for reading out the columns are presented.Comment: 8 pages, 9 figures, submitted to Nucl. Instr. and Methods as proceedings of the 9th European Symposium on Semiconductor Detectors, Elmau, June 23-27, 200

    Automated data reduction workflows for astronomy

    Full text link
    Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. The efficiency of data reduction can be improved by using automatic workflows to organise data and execute the sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.Comment: 12 pages, 7 figure

    Cosmology with redshift surveys of radio sources

    Get PDF
    We use the K-z relation for radio galaxies to illustrate why it has proved difficult to obtain definitive cosmological results from studies based entirely on catalogues of the brightest radio sources, e.g. 3C. To improve on this situation we have been undertaking redshift surveys of complete samples drawn from the fainter 6C and 7C radio catalogues. We describe these surveys, and illustrate the new studies they are allowing. We also discuss our `filtered' 6C redshift surveys: these have led to the discovery of a radio galaxy at z=4.4, and are sensitive to similar objects at higher redshift provided the space density of these objects is not declining too rapidly with z. There is currently no direct evidence for a sharp decline in the space density of radio galaxies for z > 4, a result only barely consistent with the observed decline of flat-spectrum radio quasars.Comment: 8 pages Latex, To appear in the "Cosmology with the New Radio Surveys" Conference - Tenerife 13-15 January 199

    Astro-WISE: Chaining to the Universe

    Get PDF
    The recent explosion of recorded digital data and its processed derivatives threatens to overwhelm researchers when analysing their experimental data or when looking up data items in archives and file systems. While current hardware developments allow to acquire, process and store 100s of terabytes of data at the cost of a modern sports car, the software systems to handle these data are lagging behind. This general problem is recognized and addressed by various scientific communities, e.g., DATAGRID/EGEE federates compute and storage power over the high-energy physical community, while the astronomical community is building an Internet geared Virtual Observatory, connecting archival data. These large projects either focus on a specific distribution aspect or aim to connect many sub-communities and have a relatively long trajectory for setting standards and a common layer. Here, we report "first light" of a very different solution to the problem initiated by a smaller astronomical IT community. It provides the abstract "scientific information layer" which integrates distributed scientific analysis with distributed processing and federated archiving and publishing. By designing new abstractions and mixing in old ones, a Science Information System with fully scalable cornerstones has been achieved, transforming data systems into knowledge systems. This break-through is facilitated by the full end-to-end linking of all dependent data items, which allows full backward chaining from the observer/researcher to the experiment. Key is the notion that information is intrinsic in nature and thus is the data acquired by a scientific experiment. The new abstraction is that software systems guide the user to that intrinsic information by forcing full backward and forward chaining in the data modelling.Comment: To be published in ADASS XVI ASP Conference Series, 2006, R. Shaw, F. Hill and D. Bell, ed

    MUSE library of stellar spectra

    Get PDF
    Context. Empirical stellar spectral libraries have applications in both extragalactic and stellar studies, and they confer an advantage over theoretical libraries because they naturally include all relevant chemical species and physical processes. In recent years we have seen a stream of new sets of high-quality spectra, but increasing the spectral resolution and widening the wavelength coverage means resorting to multi-order echelle spectrographs. Assembling the spectra from many pieces results in lower fidelity of their shapes. Aims: We aim to offer the community a library of high-signal-to-noise spectra with reliable continuum shapes. Furthermore, the use of an integral field unit (IFU) alleviates the issue of slit losses. Methods: Our library was built with the MUSE (Multi-Unit Spectroscopic Explorer) IFU instrument. We obtained spectra over nearly the entire visual band (lambda ~ 4800-9300 AA). Results: We assembled a library of 35 high-quality MUSE spectra for a subset of the stars from the X-shooter Spectral Library. We verified the continuum shape of these spectra with synthetic broadband colors derived from the spectra. We also report some spectral indices from the Lick system, derived from the new observations. Conclusions: We offer a high-fidelity set of stellar spectra covering the Hertzsprung-Russell diagram. These can be used for both extragalactic and stellar studies and demonstrate that the IFUs are excellent tools for building reliable spectral libraries

    Radio galaxy evolution: what you can learn from a Brief Encounter

    Get PDF
    We describe the pitfalls encountered in deducing from classical double radio source observables (luminosity, spectral index, redshift and linear size) the essential nature of how these objects evolve. We discuss the key role played by hotspots in governing the energy distribution of the lobes they feed, and subsequent spectral evolution. We present images obtained using the new 74 MHz receivers on the VLA and discuss constraints which these enforce on models of the backflow and ages in classical doubles.Comment: invited talk at `Lifecycles of Radio Galaxies' workshop; eds John Biretta et a

    Simulations of multiphase turbulence in jet cocoons

    Get PDF
    M. Krause and P. Alexander, 'Simulations of multiphase turbulence in jet cocoons', Monthly Notices of the Royal Astronomical Society, Vol. 376, pp. 465-478, April 2007, the version of record is available online at doi: 10.1111/j.1365-2966.2007.11480.x. Published by Oxford University Press on behalf of the Royal Astronomical Society. © 2007 The Authors. Journal compilation © 2007 RASThe interaction of optically emitting clouds with warm X-ray gas and hot, tenuous radio plasma in radio jet cocoons is modelled by 2D compressible hydrodynamic simulations. The initial setup is the Kelvin–Helmholtz instability at a contact surface of density contrast 104. The denser medium contains clouds of higher density. Optically thin radiation is realized via a cooling source term. The cool phase effectively extracts energy from the other gas which is both, radiated away and used for acceleration of the cold phase. This increases the system’s cooling rate substantially and leads to a massively amplified cold mass dropout. We show that it is feasible, given small seed clouds of the order of 100 M, that all of the optically emitting gas in a radio jet cocoon may be produced by this mechanism on the propagation time-scale of the jet. The mass is generally distributed as T−1/2 with temperature, with a prominent peak at 14 000 K. This peak is likely to be related to the counteracting effects of shock heating and a strong rise in the cooling function. The volume filling factor of cold gas in this peak is of the order of 10−5–10−3 and generally increases during the simulation time. The simulations tend towards an isotropic scale-free Kolmogorov-type energy spectrum over the simulation time-scale. We find the same Mach-number density relation as Kritsuk & Norman and show that this relation may explain the velocity widths of emission lines associated with high-redshift radio galaxies, if the environmental temperature is lower, or the jet-ambient density ratio is less extreme than in their low-redshift counterparts.Peer reviewe

    Detection of a Thick Disk in the edge-on Low Surface Brightness Galaxy ESO 342-G017: I. VLT Photometry in V and R Bands

    Get PDF
    We report the detection of a thick disk in the edge-on, low surface brightness (LSB), late-type spiral ESO 342-G017, based on ultra-deep images in the V and R bands obtained with the VLT Test Camera during Science Verification on UT1. All steps in the reduction procedure are fully described, which, together with an extensive analysis of systematic and statistic uncertainties, has resulted in surface brightness photometry that is reliable for the detection of faint extended structure to a level of V = 27.5 and R = 28.5 mag/square arcsec. The faint light apparent in these deep images is well-modeled by a thick exponential disk with an intrinsic scale height about 2.5 times that of the thin disk, and a comparable or somewhat larger scale length. Deprojection including the effects of inclination and convolution with the PSF allow us to estimate that the thick disk contributes 20-40% of the total (old) stellar disk luminosity of ESO 342-G017. To our knowledge, this is the first detection of a thick disk in an LSB galaxy, which are generally thought to be rather unevolved compared to higher surface brightness galaxies.Comment: Accepted for publication in Astronomy & Astrophysics; 18 pages, 12 figure

    CENSORS: A Combined EIS-NVSS Survey Of Radio Sources. I. Sample definition, radio data and optical identifications

    Full text link
    A new sample of radio sources, with the designated name CENSORS (A Combined EIS-NVSS Survey Of Radio Sources), has been defined by combining the NRAO VLA Sky Survey (NVSS) at 1.4 GHz with the ESO Imaging Survey (EIS) Patch D, a 3 by 2 degree region of sky centred at 09 51 36.0, -21 00 00 (J2000). New radio observations of 199 NVSS radio sources with NVSS flux densities S(1.4GHz) > 7.8mJy are presented, and compared with the EIS I-band imaging observations which reach a depth of I~23; optical identifications are obtained for over two-thirds of the ~150 confirmed radio sources within the EIS field. The radio sources have a median linear size of 6 arcseconds, consistent with the trend for lower flux density radio sources to be less extended. Other radio source properties, such as the lobe flux density ratios, are consistent with those of brighter radio source samples. From the optical information, 30-40% of the sources are expected to lie at redshifts z >~ 1.5. One of the key goals of this survey is to accurately determine the high redshift evolution of the radio luminosity function. These radio sources are at the ideal flux density level to achieve this goal; at redshifts z~2 they have luminosities which are around the break of the luminosity function and so provide a much more accurate census of the radio source population at those redshifts than the existing studies of extreme, high radio power sources. Other survey goals include investigating the dual--population unification schemes for radio sources, studying the radio luminosity dependence of the evolution of radio source environments, and understanding the radio power dependence of the K-z relation for radio galaxies.Comment: Accepted for publication in MNRAS. 28 pages plus 36 reduced resolution jpeg figures. A postscript version with full resolution figures included in the text is available from http://www.roe.ac.uk/~pnb/censors.ps.g
    • 

    corecore